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bstract

Various low-cost adsorbents have been used for removing Cu(II) ions from aqueous solutions for the treatment of copper containing wastewaters
o remove organic compounds and color. Sawdust is an impressive adsorbent in terms of adsorption efficiency, cost and availability; hence the use
f sawdust as biosorbent has been widely studied. Many earlier investigations tried to correlate the experimental data with available models or some
odified empirical equations, but these results were unable to predict the values of parameters from a single equation. Artificial neural networks

ANN) are effective in modeling and simulation of highly non-liner multivariable relationships. A well-designed and very well trained network
an converge even on multiple number of variables at a time without any complex modeling and empirical calculations. In this present work ANN

s applied for the prediction of percentage adsorption efficiency for the removal of Cu(II) ions from aqueous solutions by sawdust. Artificial neural
etwork model, based on multilayered partial recurrent back-propagation algorithm has been used. The performance of the network for predicting
he sorption efficiency of sawdust for copper is found to be very impressive.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Biosorption of metals from aqueous solutions can be con-
idered as a promising technology in industrial wastewater
reatment. It is based on the ability of biological materials to
ccumulate metal ions from wastewater by either metabolically
ediated or physicochemical pathways of uptake [1]. This inno-

ative process uses biomaterials which are either abundant in
ature or wastes coming from industrial production and biolog-
cal processes such as fermentation and water treatment.

The advantage of biosorption is that it uses biomass and
ndustrial plant waste which are cheap and abundant. Broad-
ange biosorbents can collect most of the metal ions from the
olution, and a certain concentration of a specific metal could be
chieved either during the adsorption uptake by manipulating the

roperties of a biosorbent, or upon desorption during the regen-
ration cycle of these biosorbent. There have been numerous
tudies on the adsorption of metal ions from aqueous solutions

∗ Corresponding author. Tel.: +91 9443240210.
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y microbial and plant biomass [1–6], capable of collecting toxic
eavy metals (Cd2+, Hg2+, Zn2+, Pb2+), precious metals (Au3+,
d2+, Ag+) and base metals (Co2+, Ni2+, Cu2+).

The mechanism of biosorption is highly complex and is dif-
cult to model and simulate using conventional mathematical
odeling. This is mainly due to the interaction of more number

f adsorption process variables, and hence the resulting rela-
ionships are highly non-linear [11]. Adsorption isotherms are
nadequate to accurately predict the extent of adsorption and
eproduction of results.

Application of artificial neural networks (ANN) has been
onsidered as a promising tool because of their simplicity
owards simulation, prediction and modeling. The advantages
f ANN are that they require less time for development than the
raditional mathematical models, the need for extensive exper-
mentation is avoided as limited numbers of experiments are
ufficient to predict the degree of non-linearity and their ability to
earn complex relationships without requiring the knowledge of

he model structure [7]. ANN models could describe adsorption
ystems better than general rate models [10]. Even the adsorp-
ion isotherms can be represented by neural networks [12]. So,
t is preferable to use a non-parametric technique such as a

mailto:busiprakash@hotmail.com
dx.doi.org/10.1016/j.jhazmat.2007.08.015
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ack-propagation neural network to represent such an equilib-
ium relationship [11].

The present work investigates the implementation of neu-
al networks for the prediction of biosorption efficiency for
he removal of copper using an effective and cheap biosorbent
amely sawdust. The network results were compared with those
btained through experiments.

. Artificial neural networks

Artificial neural networks are known for their superior abil-
ty to learn and classify data. The inspiration of neural networks
ame from studies on the structure and function of the brain
nd nerve systems as well as the mechanism of learning and
esponding. The potential applications include prediction, clas-
ification, data association, data conceptualization, data filtering
nd optimization.

There are two broad classifications of neural network struc-
ures [13]:

(i) External structure: Describes the overall, or macro arrange-
ment of connections between inputs, outputs and hidden
layers that compose the output. The several general external
arrangements are, single-input and single-output (SISO),
multiple-input and single-output (MISO) and multiple-
input and multiple-output (MIMO).

ii) Internal structure: Refers to the actual connections between
individual nodes both within and between layers. Any node
can be connected with any node in the network. The rela-
tive position of the origin to the endpoint of the connection
defines the network’s internal structure. There are three
types [13] of connections that are in use: inter-layer, intra-
layer and recurrent:
• Inter-layer connection: Outputs from nodes on one layer

feed into nodes in a different layer can be further classified
as feed forward and feed back.

• Intra-layer connection: Outputs from nodes in one layer
feed into nodes in that same layer.

• Recurrent connection: Outputs from a node feed into
itself as inputs.

Generally the complexity of the problem considered and
nteraction of the variables involved decides the selection of net-
ork structure and type of connection between layers and nodes.
urther, the selection of optimum number of hidden layers and
umber of neurons in each hidden layer may be justified from
he performance of the network and by comparing the resulting

ean square and standard deviation errors.
The different types of networks [15] based on their incremen-

al complexity are: feed-forward network, recurrent network,
tochastic network, modular networks and a few special types –
olographic associative memory, instantaneously trained, spik-
ng networks, etc. – which do not fit in any of these categories.
As biosorption influenced by number of process variables
hich hold complex non-linear relationships among them so as

o affect the sorption process, any simple feed-forward network
ay not be sufficient to handle the prediction efficiently [8]. A

p
s
t
q

Fig. 1. Recurrent pattern.

apable recurrent network with suitable training algorithm may
erform the task better.

.1. Recurrent network

A recurrent network [14] is one where the recurrent usage
f output occurs in such a way that the momentary output of
he network or hidden layer is fed back as succeeding additional
nput along with other inputs. In a recurrent network, therefore,
here will be at least one cyclic path (Fig. 1). Recurrent networks
an be used to process sequences of data; sequences include
amples of data at successive time intervals.

There are two types of recurrent networks:

Fully recurrent: Here the output of the network is fed back in
to the network (e.g., Jordan network)
Partially recurrent: Here the recurrent connection is from the
hidden layer to the state vector, not from the output layer (e.g.,
Elman network)

Fully recurrent networks feed back the hidden layer to it
elf. Partially recurrent networks start with a fully recurrent net
nd add a feed-forward connection that bypasses the recurrence,
ffectively treating the recurrent part as a state memory. These
ecurrent networks can have an infinite memory depth and thus,
nd relationships through time as well as through the instanta-
eous input space. Recurrent networks are the state-of-the-art
n non-linear time series prediction, system identification and
emporal pattern classification.

.2. Elman network

Elman networks [9] generally follow partially recurrent
ulti-layer back-propagation, with the addition of a feedback

onnection from the output of the hidden layer to its inputs
Fig. 2). This feedback path allows Elman networks to learn,
ecognize and generate temporal patterns and spatial patterns.

The number of state vector units must equal the number of
idden units, state vector units look like input units to the back-

ropagation algorithm. At time zero, the current state units are
et to a fixed value (0.5 for Elman), and the input units are set
o the pattern representing the first sequence member. At subse-
uent time steps (Δ), the input units are set to the next sequence
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Fig. 2. Partial recurrent pattern.

ember, and the current state units are set to the previous hidden
nit values, back-propagation works as usual.

The Elman network utilizes specific implementation of trans-
er functions; it has Tanh neurons in its hidden (recurrent) layer
nd Linear Sigmoid neurons in its output layer. This combina-
ion is special in recurrent networks, these transfer functions can
pproximate any function (with a finite number of discontinu-
ties) with arbitrary accuracy. The only requirement is that the
idden layers must have enough neurons. More hidden neurons
re needed as the function being fit increases in complexity.

The Elman network differs from conventional networks in
hat the hidden layers have recurrent connections. The delay
etween these connections store values from the previous time
tep, which can be used in the current time step.

.3. Back-propagation training of recurrent networks

In pure feed-forward networks the back-propagation [13] will
e carried out in such a way that the network compares its
utput with the training data, then the network calculates the
mount of error between its predicted output and the actual out-
ut. The network works backwards through the layers, adjusting
he weight factors according to how much error it has calculated
n its output. Once all of the weight factors have been adjusted,
he network works in a forward path, taking the same input data
o predict the output, based on the new weight factors. The net-
ork again calculates the error between the predicted and actual
utputs. It adjusts the weight factors and the process continues,
teratively, until the mean square errors between the predicted
nd actual outputs have been minimized. In this case the network
oes not maintain a short-term memory, where as a recurrent
etwork does.

In the original experiments presented by Elman [9] trun-
ated back-propagation was used. This basically means that the
elayed state value yj(t − 1) was simply regarded as an addi-
ional input, any error at the state layer δj(t), was used to modify
eights from this additional input slot.

Errors can be back-propagated even further. This is called

ack-propagation through time (BPTT), where all recurrent
eights will be duplicated spatially for an arbitrary number of

ime steps (τ). Consequently, each node which sends activation

3

t
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long a recurrent connection has – at least – τ number of copies as
ell. Errors are thus back-propagated according to the fillowing

quation:

pj(t − 1) =
m∑

h

δph(t)uhjf (ypj(t − 1))

here h is the index for the activation receiving node and j for
he sending node (one time-step back).

It is important to note, however, that after error deltas have
een calculated, weights are folded back adding up to one big
hange for each weight. Obviously there is a greater memory
equirement and the case is larger the τ greater the memory will
e. But still, in practice very large τ may lead to vanishing gra-
ient effect. As such for each layer the error is back-propagated
hrough the network, the error gets smaller and smaller until it
iminishes completely.

.4. Testing the network

An important aspect of developing neural networks is in the
etermination of the performance after the training is complete.
he performance of the network is evaluated on the basis of two
ain criteria [7,13] based on:

(i) Recollection of the predicted output from the set of training
data called as the recall step.

ii) Ability of the network to predict output for the data not
presented in the training set called as generalization step.

In the recall step, the network’s performance is evaluated by
ecalling (retrieving) specific initial input used in training. Thus,
previously used input pattern was introduced to the trained

etwork. The network then attempts to predict the corresponding
utput. Recall testing is so named because it measures how well
he network can recall what it has learned. Generalization testing
s conducted in the same manner as recall testing; however, now
he network is given input data with which it was not trained.
eneralization testing is so named because it measures how well

he network can generalize what it has learned and form rules
ith which to make decisions about data it has not previously

een.

. Materials and methods

Sawdust of Mangifera indica (mango tree) has been most
mpressive among the efficient bio-adsorbents so for reported.
t was used effectively [6] as an adsorbent for the removal of
u(II) from aqueous solution. Sawdust is washed to clean the
dhering dirt, rinsed thoroughly with double-distilled water and
nally heated in an air oven at 100–105 ◦C for 24 h. After drying,

he adsorbents are sieved by using 100 mesh sieve.
.1. Variables affecting the biosorption

The various factors which affect the biosorption are; agita-
ion rate, pH, temperature, sorption time, sorbent dose, particle
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Table 1
Network topology

Architecture Recurrent (Elman)
Input processing elements 4
Output processing elements 1
Exemplars 4864
hidden layers 3
input layer Axon
Recurrence Partially recurrent

Hidden layer 1
Processing elements 50
Transfer function TanhAxon
Learning rule Momentum
Step size 0.010
Momentum 0.700

Hidden layer 2
Processing elements 40
Transfer function TanhAxon
Learning rule Momentum
Step size 0.10
Momentum 0.700

Hidden layer 3
Processing elements 27
Transfer function TanhAxon
Learning rule Momentum
Step size 0.010
Momentum 0.700

Output layer
Processing elements 1
Transfer function Linear Sigmoid Axon
Learning rule Momentum
Step size 0.0010
Momentum 0.700

Learning Supervised learning
Maximum epochs 1000
Termination Mean square error

Threshold 0.001, minimum
Weight update Batch
Probe configuration MSE: 0.002139579316, %error:

4

4

8
s

c
b
t
l
d
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ize and initial metal-ion concentration [1,2,5,6]. Among these
rocess variables, the initial ion concentration, pH, tempera-
ure and particle size are found to be the predominant variables,
hese four variables are used as the input vectors to train the
etwork whereas the other three variables are kept constant at
heir optimum values.

Variables
Initial Cu ion concentration (mg/l): 50, 60, 70 and 80
pH: 3–6;
temperature (◦C): 25, 30, 35 and 40;
particle size (�m): 50, 100, 150 and 200.

Constants
Agitator speed: 200 rpm;
adsorption time: 90 min;
sorbent dosage: 500 mg/50 ml;

.2. Experiments

An experimental design for the biosorption of Cu(II) using
awdust has been developed by assigning four different exper-
mental modes as listed, here each time three of the variables
ere kept constant and the remaining one is altered within the

elected range:

Mode 1: In this mode of operation, the initial ion concentra-
tion was varied keeping the pH, temperature and particle size
constant.
Mode 2: In this mode of operation keeping the initial ion con-
centration, temperature and particle size constant and varying
the pH generated the data.
Mode 3: In this mode of operation, temperature was varied
keeping the other variables constant.
Mode 4: In this mode of operation, the data are generated by
keeping all the variables constant except the particle size.

As the process has four variables with four levels, using their
actorial design the experimental data (256 experimental runs)
ere generated. For each experimental run the amount of copper
iosorbed was estimated and thus the biosorption efficiency.

.3. Batch adsorption studies

. The aqueous solution of copper chloride having desired cop-
per ion concentration (50, 60, 70, 80 mg/l) was taken and its
pH is adjusted to desired value.

. To the 50 ml of above solution 500 mg of particles having
the size of 50, 100, 150, 200 �m is added in separate conical
flasks.

. These flasks are then placed in the orbital shakers under
controlled temperatures (25, 30, 35 and 40 ◦C).
. The speed of the orbital shaker is fixed at 200 rpm and adsorp-
tion is carried out until equilibrium is achieved, i.e., 90 min.

. After attaining equilibrium, contents of the flasks are fil-
tered separately and then analyzed for the amount of copper
remaining in the solution.

n
t
p
i
p

1.123533114529, elapsed time 2:38:13

. Network design

.1. Construction of the network

NeuroSolutions® 5.0 package (evaluation) with Pentium III
66 MHz computer was used for construction, training, testing,
imulation and validation of the network.

A recurrent network (Elman) with three hidden layers,
ontaining 50, 40, 27 neurons, respectively, was found to
e appropriate for the system considered in this work. The
opology of the network is presented (Table 1), and the five-
ayered partially recurrent network architecture is shown in
iagram (Fig. 3). As per the network topology the neural
etwork employed has four input nodes corresponding to

he four process variables namely, initial ion concentration,
H, temperature and particle size. The corresponding exper-
mental percentage adsorption efficiency is fed for training
urpose.
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Fig. 3. Five-layered partiall

.2. Data generation

As the experimental data obtained (256 numbers) are not
ufficient to train the network, they were further smoothened
sing linear interpolation in order to produce sufficient data to
rain the network effectively within the selected range of each

ariable. This data generation is done by SPSS 10.0 (evaluation).
hus, the final lot produced consist 4864 data sets.

Two subsets of data are used to build the network model: a
raining set and a testing set. The training phase needs to pro-

i
t
o
s

able 2
imulation and validation data—biosorption of Cu(II) by sawdust

xperimental
un

Feed concentration
(mg/l)

pH Temperature (◦C) Partic
(�m)

1 55 3.5 27.5 75
2 55 3.5 27.5 160
3 59 4.6 39 80
4 64 4.3 34 140
5 68 5.3 32 175
6 73 5.8 29 60
7 78 3.8 38.5 130
8 71 4.9 35 195
9 63 3.2 26 88
0 67 4.5 32 125
1 61 5.3 38 160
2 53 3.3 28 150
3 59 3.8 31.4 190
4 64 4.7 37 65
5 58 4.5 25 135
6 69 5.2 34.3 110
7 74 5.6 36 50
8 57 4.4 31 115
9 64 3.9 33 135
0 78 3.3 40 190
1 52 5.1 28.5 95
2 67 5.9 30.5 105
3 77 4.2 33.7 185
4 58 3.2 26 85
5 65 5.8 34 160
rrent network architecture.

uce a neural network that is both stable and convergent. In
he testing phase the performance of the network is tested for
nused experimental data obtained within the range of selected
ariables.

For simulation and validation of the network a separate
5 numbers of experiments were carried out; for each exper-

ment the values of the variables are selected in such a way
hat they are within the selected range but randomly out
f their levels, and the results are given in Table 2. This
tep ensures to validate the adoptability of the network for

le size Experimental
%efficiency

Simulated
%efficiency

Relative
error

Percentage
relative error

88.2 87.431 −0.769 −0.879
84.3 84.574 0.274 0.324
81.1 81.541 0.441 0.541
83.4 84.360 0.960 1.138
78.5 78.525 0.025 0.032
87 85.904 −1.097 −1.299
76.3 76.430 0.130 0.170
85.5 84.436 −1.064 −1.260
86.1 85.202 −0.898 −1.053
82.2 82.751 0.551 0.665
79 79.605 0.605 0.760
85.2 85.260 0.060 0.070
80.4 80.797 0.397 0.485
71.5 72.408 0.908 1.255
86.4 85.849 −0.551 −0.642
82.2 81.561 −0.639 −0.783
83.4 82.533 −0.867 −1.051
81.1 81.258 0.158 0.190
77.5 78.788 1.288 1.635
74.6 75.209 0.609 0.800
87.2 87.606 0.406 0.463
83.2 82.194 −1.006 −1.224
79 78.982 −0.018 −0.023
83.4 84.336 0.936 1.110
85.3 85.160 −0.140 −0.160
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Fig. 4. Experimental trend for initial Cu2+ concentration and pH.

nputs out of the training data and their pre-defined lev-
ls.

. Results and discussion

The experimental design has been made with the purpose of
xploring the effect of interaction of the four variables namely
eed concentration, pH, temperature and particle size on the
dsorption efficiency, by implementing the permutations of vari-
bles within their selected range.

.1. Observations from the experimental data

Even though the theory of the effect of variables on the
dsorption efficiency is not required for neural network mod-
ling, the observation may be helpful in understanding the
omplexity and non-linear behavior of the process, and thus the
sefulness of ANN prediction.

The observed experimental trends are shown in Figs. 4 and 5.

.1.1. Effect of initial ion concentration and pH
The scattered plot (Fig. 4) represents the trend in experimen-

al %adsorption efficiency for the changes in initial Cu2+ ion

oncentration and pH. The clusters in the plot represent the four
nitial ion concentrations of Cu2+ (50, 60, 70 and 80 mg/l) and
he four pH values (3–6). The trend indicates that the process
s highly sensitive for any change in these two variables. The

5

n

Fig. 6. Comparison between %adsorption (experimen
Fig. 5. Experimental trend for temperature and particle size.

dsorption efficiency decreases against the increase in initial ion
oncentration. Clearly 50 and 60 mg/l concentrations approach
he maximum removal, indicates lower initial concentrations
elp better adsorption.

The overall trend in pH shows high-degree of non-linearity,
imilar to the changes in initial ion concentration. As higher
ontent of H+ ions in the solution favors the adsorption process,
etter adsorption occurs for pH 6; probably, the effect of neu-
ralized condition and adsorption under basic conditions need to
e studied for further conclusions.

.1.2. Effect of temperature and particle size
Fig. 5 represents the efficiency variations for temperatures

25, 30, 35 and 40 ◦C) and particle sizes (50, 100, 150 and
00 �m). Higher temperatures always favor the desorption pro-
ess and here the trend reveals the same. In the case of particle
ize, as the overall surface area available for adsorption increases
ith decrease in particle size, here the adsorption efficiency
ecreases with increase in particle size. Even though low tem-
erature and low particle size produce significant improvements
n the adsorption process, comparatively they show less effect
n the efficiency than the other two variables.
.2. Performance of the network

Out of 4864 data sets, 4608 data sets were used to train the
etwork and selected 256 data sets were used for testing of the

tal) and %adsorption (predicted) using test data.
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ig. 7. Percentage relative error between test data and ANN predicted values
s. experimental run.

N model. During training of the network, the least mean square
rror has been kept at 0.001 and the frequency of progress (in
pochs) is set at 50 with maximum epochs of 1000 to train the
etwork.

The performance of the network upon training with the test
ata may be well exhibited by the closely followed trends
etween the actual and predicted patterns in Fig. 6. The recur-
ent neural network is found to be very efficient in predicting
he extent of adsorption within the range of data contained in
he training set, i.e., 4608 data set.

Fig. 7 represents the percentage relative error between ANN
esting (256 runs) and experimental data. The ultimate mean
quare error is found to be 0.002139579 which is within ±1%
rror range.

Fig. 8 represents comparison between ANN simulated
25 data sets) and experimental output data. The percent-
ge relative error is between +1.635 and −1.299 (Table 2).
he 25 data sets were purposely selected to remain ran-
om so as to validate the effectiveness of the network for
ntrained inputs. The introduction of recurrence over the back-
ropagation improves the forecasting performance of ANN in
omparison to the use of back-propagation alone. The pre-
icted adsorption efficiencies of ANN results obtained are

s close as with training and testing data given to the net-
ork.

ig. 8. Comparison between ANN simulated and experimental output data.

[
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. Conclusion

In the present investigation, a recurrent neural network
as been designed and demonstrated to predict the extent
f copper ion adsorption with sawdust from aqueous copper
olutions by taking into account the effect of initial copper
oncentration, pH and temperature and particle size of the adsor-
ent. A simple back-propagation recurrent network using the
omentum-training algorithm is found to be very effective to

eneralize and predict the degree of adsorption. The configura-
ion of the recurrent neural network that gives the best prediction
s the one with three hidden layers consisting of 50, 40 and
7 neurons in each layer. ANN predicted results are very close
o the experimental values. The average mean square error is
.002139579, which is sufficient to have error within ±1%. The
resent work suggests that neural network can be used as an
ffective technique in modeling, estimation and prediction of
iosorption process. Also, neural network can be considered
s an effective supplement for the conventional and compli-
ated mathematical models in the prediction of bioprocess
arameters.
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